Vom Anilinschwarz zur Solarzelle – Synthetische Farbstoffe im Wandel der Zeiten

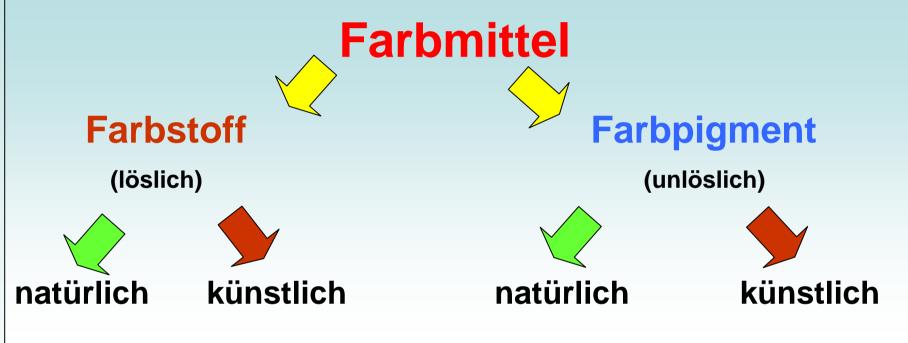
Festvortrag zum 100. Jubiläum der Deutschen Echtheitskommission

von Prof. Dr. Horst Hartmann

Historische Farbstoffsammlung der Technischen Universität Dresden

Die Faszination der Farben in der Natur veranlasste den Menschen schon immer, diese "in seine Hand" zu bekommen

Farben in der Kunst



Farben in der Gesellschaft

Farben in der Hand des Menschen

Sowohl Farbpigmente als auch Farbstoffe wurden bereits in der Antike verwendet -

Farbpigmente stammten aus natürlichen Mineralien, Steinen und Erden

Bezeichnung	Zusammensetzung	C.I.	Historische Relevanz
Orpigment	As ₂ S ₃	PY39	Ägypten, Rom
Ockergelb	FeOOH	PY42	Ägypten
Realgar	As ₄ S ₄	PY39	Antike
Umbra	Fe ₂ O ₃ /MnO ₂	PBr7	Antike
Eisenoxidrot	Fe ₂ O ₃	PR101	Altamira, Lascaux
Zinnober	HgS	PR106	Ägypten
Ultramarin	S-Silikat	PB29	Antike
Ägyptisch-Blau	CaCuSi ₂ O ₅	PB31	Antike
Azurit	Cu ₃ (OH,CO ₃) ₂	PB30	Griechenland, Ägypten
Veronagrün	Fe ₂ SiO ₄	PG23	Ägypten
Malachit	Cu ₂ (OH) ₂ CO ₃	PB 30	Antike, China

und wurden daraus durch Zermahlen und Zerreiben gewonnen

auch verschiedene Naturfarbstoffe sind bereits seit dem Altertum bekannt

Indigo (Indigofera)

Alizarin (Krappwurzel)

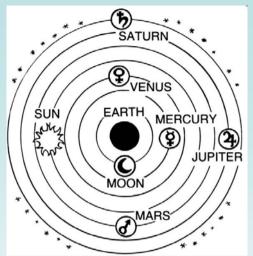
Pflanzenfarbstoff

Antiker Purpur (Purpurschnecke)

Karminsäure (Cochenillelaus)

Tierfarbstoff

Die wichtigsten Pflanzen- und Tierfarbstoffe kamen aus fernen Ländern


Name	Vorkommen	Farbe	Pflanzenteil	Verwendung
Indigo	(Sub)-Tropen	blau	Blätter	Textilfärberei
Blauholz	Südamerika	blau	Kernholz	Textilfärberei
Färberknöterich	China, Japan	blau	Blätter	Textilfärberei
Sappanholz	Südostasien, Indien	rot	Kernholz	Seide, Wolle
Brasilholz	Südamerika	rot	Kernholz	Baumwolle, Wolle
Sandelholz	Südostasien, Indien	rot	Kernholz	Wolle, Seide
Alkanna	Osteuropa, Orient	rot	Wurzel	Lebensmittel, Wolle
Krapprot	Süosteuropa, Orient	rot	Wurzel	Baumwolle
Indische Maulbeere	Indien, Polynesien	braun	Wurzel	Textilien
Katechu	Indien, Sri Lamka	gelb	Kernholz	Textilien, Leder
Gelbholz	Mittelamerika	gelb	Kernholz	Textilien, Leder
Färbereiche	Nordamerika	gelb	Rinde	Textilien, Leder
Name	Vorkommen	Farbe	Organ	Verwendung
Karminsäure	Cochenille-Laus	rot	weibl. Laus	Textilien, Kosmetika
Antiker Purpur	Puprpurschnecke	purpur	Kiemen	Textilinen

ihr Import in die Abendländer war früher recht mühsam und aufwändig

Heimische Färbepflanzen gut verfügbar, aber meist nicht ergiebig

Pflanze	Färbung	Pflanze	Färbung	Pflanze	Färbung
Birke	zitronengelb	Petersilie	gelb	Bartflechte	gelbgrün
Brennnessel	zitronengelb	Rainfarn	gelb	Salbei	gelbgrün
Färberwau	zitronengelb	Schöllkraut	gelb	Bärwurz	gelbgrün
Gelbholz	zitronengelb	Schachtelhalm	gelb	Vogelknöterich	gelbgrün
Lemongras	zitronengelb	Schafgarbe	gelb	Hamamelisblätter	gelbgrün
Mistel	zitronengelb	Tausendgüldenkraut	gelb	Holunderblätter	gelbgrün
Ringelblume	zitronengelb	Zwiebel	gelb	Erika/ Heide	gelbgrün
Saflor	zitronengelb	Färberwau	goldgelb	Faulbaum	rosa
Bartflechte	gelb	Kurkuma	goldgelb	Färberwau	ocker
Eiche/ Rinde	gelb	Island-Moos	goldgelb	Kreuzdornrinde	ocker
Arnikablüten	gelb	Rhabarber	goldgelb	Schöllkraut	ocker
Bärentraube	gelb	Saflor	goldgelb	Rhododendron	rotbraun
Brombeerblätter	gelb	Sonnenblume	goldgelb	Lärchenrinde	rotbraun
Färberginster	gelb	Tagetes	goldgelb	Färberwaid	blau
Goldrute	gelb	Eiche/ Blätter	dunkelgelb	Holunderbeeren	rot-violett
Mädesüß	gelb	Eiche/ Rinde	dunkelgelb	Ampfer/Samen	orange
Möhre	dunkelgelb	Hibiskusblüten	rosa	Henna	ocker
Annattosaat	dunkelgelb	Heidelbeeren	rosa	Eschenrinde	ocker
Apfelbaumrinde	gelbgrün	Schw. Johannisbeeren	rosa	Eiche/ Rinde	ocker
Ampfer/Blätter	gelbgrün	Preiselbeeren	rosa	Linde/Rinde	ocker
Kerbel	gelbgrün	Sandelholz	rosa	Ulmenrinde	ocker
Myrthe	gelbgrün	Waldmeister	altrosa	Tormentillwurzel	ocker
Johanniskraut	gelbgrün	Brasilholz/Rotholz	altrosa	Erika/ Heide	ocker
Frauenmantel	gelbgrün	Kirschbaumrinde	orange	Ritterspornblüten	Türkis
Hamamelis	gelbgrün	Färberwau	ocker	Lärchenrinde	rotbraun
Holunderblätter	gelbgrün	Kreuzdornrinde	ocker	Färberwaid	blau
Erika/ Heide	gelbgrün	Schöllkraut	ocker	Holunderbeeren	rot-violett
Faulbaum	rosa	Rhododendron	rotbraun	Ampfer/Samen	orange

Im 15. Jahrhundert entsteht ein neues Weltbild -Kugelgestalt der Erde wird bewusst; neue Länder und Kontinente entdeckt

Die Sonne steht im Mittelpunkt der Welt, um die sich die Erde als Kugel dreht

C. Ptolemäus (um 800)

Zeitalter der Entdeckungen

Suche nach

neuen Stoffen

Christoph Columbus

Ferdinand Magellan

Alchemie

1451 – 1524

1480 - 1521

Stein der Weißen:

Neue Produkte (Kolonialwaren) wurden verfügbar

GOLD

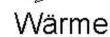
Alchemie Untersuchung von Stoffen

(anorganische Stoffe)

- Erden
- Steine
- Mineralien
- Erze

der belebten Natur (organische Stoffe)

- Tiere
- Pflanzen (Holz)


(Kohle)

Die Alchimie und einige ihrer Resultate

Jahr	Entdecker	Pigment-Name	Code	Bestandteil
1704	Heinrich Diesbach	Berliner Blau	PB27	Eisencyanid
1775	Carl Wilhelm Scheele	Scheele`s Grün	PG22	Kupferarsenit
1780	Bernard Courtois	Zinkweiß	PW4	Zinksulfid
1780	Sven Rinmann	Kobaltgrün	PG19	Kobaltoxyd
1797	Nicolaus-Luis Vauquelin	Chromgelb	PY34	Bleichromat
1802	Luis Thenard	Kobaltblau	PB72	Kobaltoxyd
1805	Andreas Höpfner	Cerulablau	PV49	Kobalt, Zinn, Chrom
1814	Nicolaus-Luis Vauquelin	Iodscharlach	PR108	Quecksilberiodid
1817	Franz Strohmeier	Cadmiumgelb	PO20	Cadmiumsulfid
1828	Jean-Baptiste Guimet, C. Gmelin	Lazurith	PB29	Schwefelsilikat
1831	Nikolaus Wolfgang Fischer	Kobaltgelb	PY40	Nitrokobaltat
1838	Pannetier & Binet	Viridian	PV18	Chromoxyd
1859	Jean Salvétat	Kobaltviolett		Kobaltphosphat
1868	E. Leykauf	Manganviolett	PV16	Managanphosphat
1878	Johannes Zeltner	Ultramarinviolett	PV15	Schwefelsilikat

Zahlreiche dieser künstlichen Pigmente enthielten giftige Schwermetalle!

Scheeles oder Schweinfurter Grün

erlangte traurige Berühmtheit

Alte Schweinfurter Methode	Jüngeres Verfahren (a)
- lösen von Grünspan in	- ansetzen arseniger Säure
Essig	mittels Soda
 Lösen von arseniger Säure	- Fällen der heißen Lösung
aus weißem Arsenik in	mit heißgesättigter
Wasser	Kupfersulfatlösung
 Fällen beider Lösungen	- Nach kurzer Zeit Zugabe
miteinander	der Essigsäure
 Bilden eines anfangs gelbgrünen Niederschlags, später des typischen Schweinfurter Grüns 	 Niederschlagsbildung Abgießen des Niederschlags Auswaschen mit heißem Wasser
- Abgießen des	zum Entfernen der restlichen
Niederschlages mit	löslichen Salze und der
überschüssiger arseniger	überschüssigen arsenigen Säure
Säure	- Bildung der grünen Kristalle
 Auswaschen mit heißem Wasser zum Entfernen der restlichen löslichen Salze und der überschüssigen 	

arsenigen Säure - Bildung der grünen Kristalle

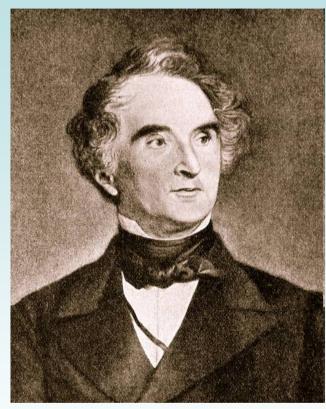
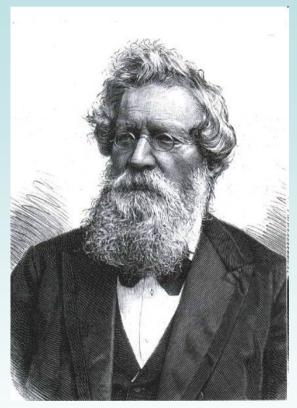


Abb. 2 Wilhelm Sattler, 1837

in geschlossenen Räumen entsteht giftiger Arsenwasserstoff (von Basedow)


Wegbereiter der Organischen Chemie:

Widerlegung des vis vitalis-Theorems durch J. v. Liebig

Justus von Liebig 1828

Synthese von Harnstoff CH₄N₂O aus Ammoniumcyanat

August Wilhelm von Hofmann 1856

Synthese von Chinin $C_{20}H_{22}N_2O_2$ aus Napthylamin 2 $C_{10}H_9N + H_2O$

Hofmanns idea: künstl. Herstellung von Chinin

$$C_{10}H_9N + 2 H_2O \longrightarrow C_{20}H_{22}N_2O_2$$

Naphthylamine Quinine

Perkins Aufgabe:

$$C_{10}H_{13}N + 3O \longrightarrow C_{20}H_{24}N_2O_2$$

Allyltoluidine

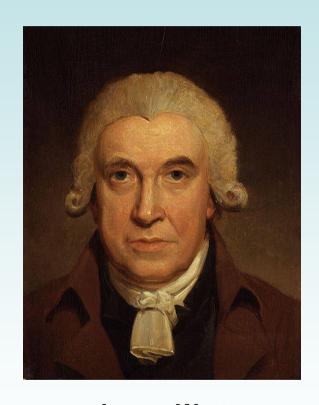
Quinine

Als Rohstoff für das Mauveins diente technisches Anilin, das aus Teer gewonnen wurde

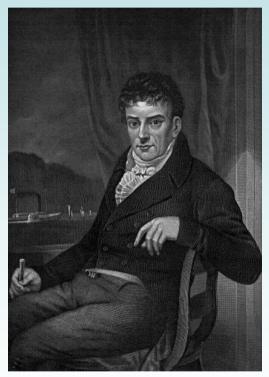

Perkins Mauvein in der Historischen Farbstoffsammlung der TU Dresden

Die Bedeutung der Entdeckung **Perkins** bestand vor allem darin, dass sich nunmehr die Aufmerksamkeit der Chemiker auf einen bisher weitgehend unbekannten, aber seit Ende des 18. Jahrhunderts in riesigen Mengen anfallenden Rohstoff richtete:

Dieser Rohstoff war der Teer!

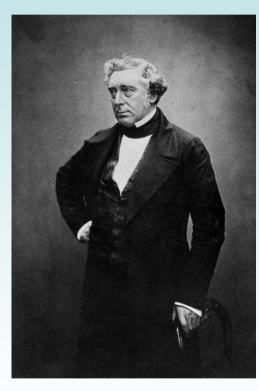

Er fiel bei der Verkokung der Kohle an, die von Darby 1835 zur industriellen Reife gebracht wurde und zur Eisen- und Stahl-Gewinnung diente.

Eisen und Stahl wurden zur Herstellung von **Dampfmaschinen, Eisenbahnen** und anderen mechanischen Geräten, wie z.B. Spinnmaschinen, in großem Umfange benötigt


Ein neues Zeitalter bricht an:

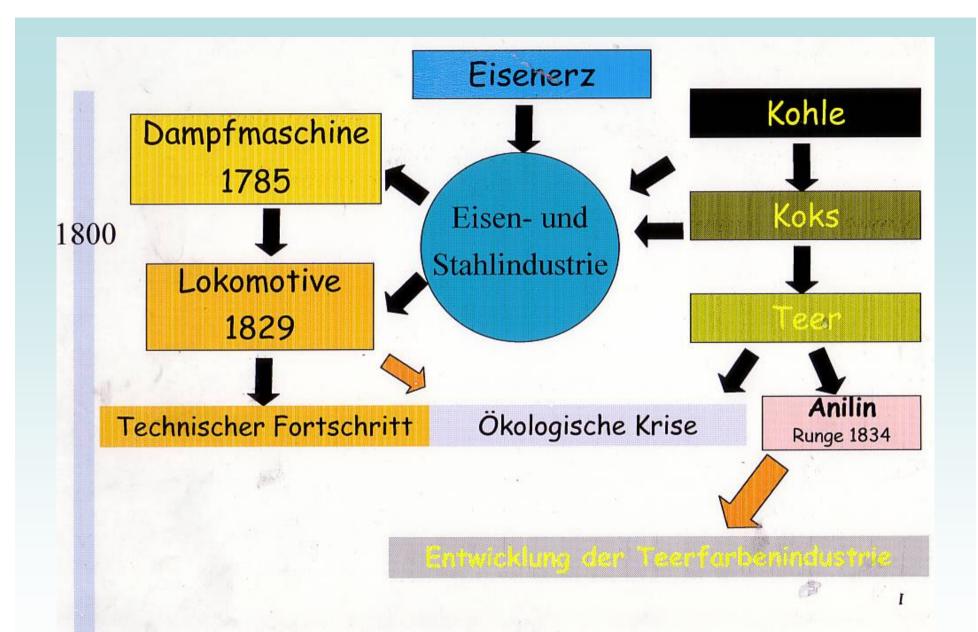
18. Jahrhundert: Das Zeitalter der Dampf-Maschinen

James Watt 1736 - 1819


Dampfmaschine

Robert Fulton

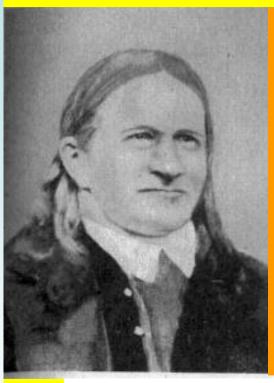
1765 - 1815


Dampfschiff

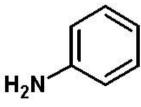
Robert Lewis Stephenson

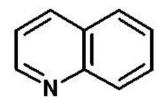
1803 - 1859

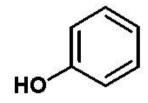
Lokomotive



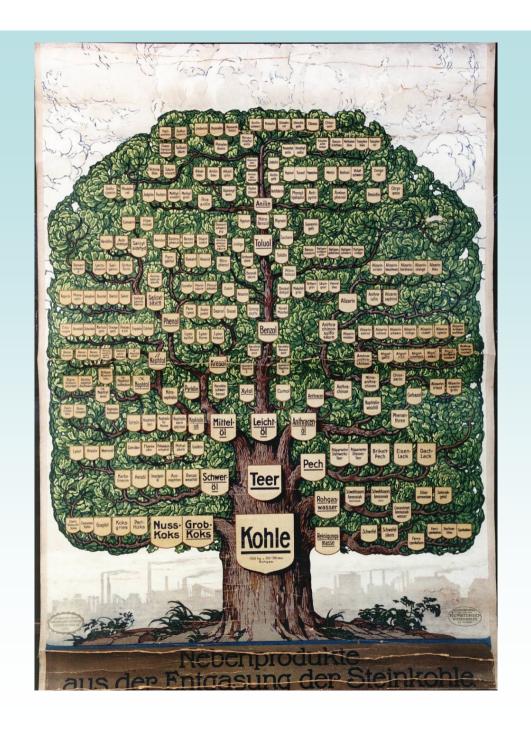
Teer war zunächst unliebsames Abfallprodukt der Koksgewinnung und enthielt eine Fülle von Inhaltsstoffen, von denen einige zuerst von **F. F. Runge** im Jahre 1834 isoliert wurden



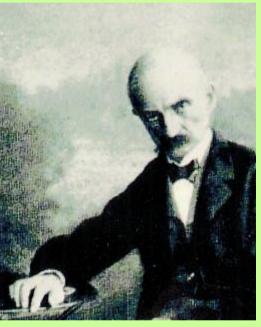

Friedlieb Ferdinand Runge (1794 – 1867)


Entdecker des Anilins im Teer (1834)

- 1794 in Hamburg geboren
- Apothekerlehre in Lübeck
- 1820 Uni Jena, Dr. med. et. chirurg.
- 1821 Entdeckung des Atropins
- 1822 Uni Berlin, Dr. phil. (Indigo)
- 1823 Privatdozent in Breslau
- 1826 a.o Prof. für Technische Chemie
- 1833 Technischer Leiter der Produktenfabrik Oranienburg
- 1834 Entdeckung von Anilin, Chinolin und Phenol im Teer
- 1835 Stearinkerzen aus Palmöl
- 1867 gestorben



Anilin


Chinolin

Phenol

Wegbereiter der Teerfarbenindustrie

William Henry Perkin (1838 – 1907)

Mauvein

1856

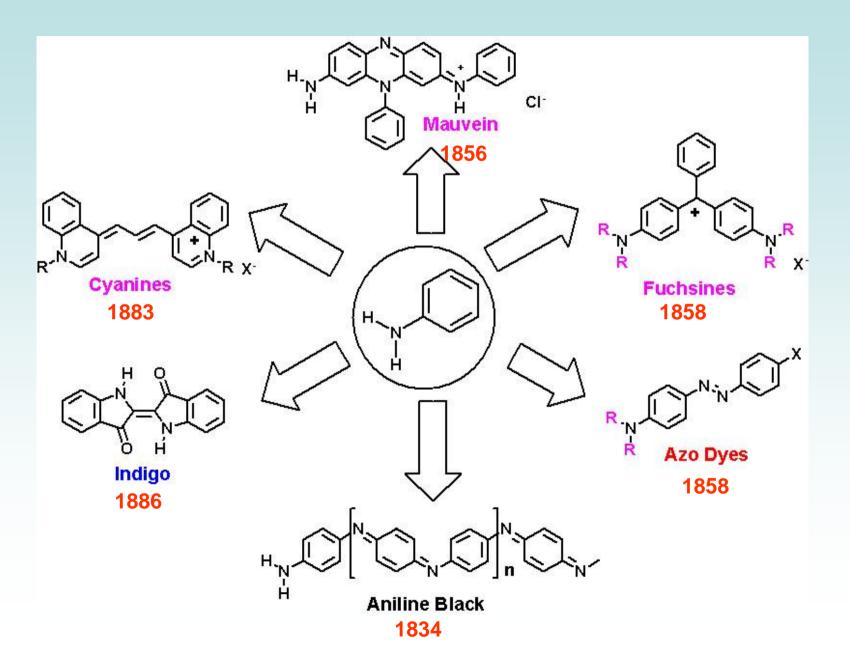
Emanuel Verguin (1814 - 1864)

Fuchsin

1858

Peter Griess

(1829 - 1888)


Azoverbindungen

1863

Wichtige Erfindungen auf dem Gebiet der Teerfarben

1834	F. F. Runge	Isolierung von Anilin, Phenol, Naphthalin aus Teer
1034	1.1. Kunge	
		Entdeckung des Anilinschwarz
1856	W. Perkin	Entdeckung des Mauveins
1857	E. Verguin	Entdeckung des Fuchsins
1862	P. Grieß	Entdeckung der Diazoniumsalze
1863	J. Martius	Entdeckung des 1. Azofarbstoffs Bismarckbraun
1868-70		Gründung BASF, BAYER, AGFA, CIBA, HÖECHST
1868	Gräbe,	Technische Synthese des Alizarins
	Liebermann	(Alizarin 1826 aus Krappwuzel isoliert)
1871	von Bayer	Entdeckung der Phthaleine
1876	Caro	Entdeckung des Methylenblaus
1877	E. Fischer	Entdeckung Malachitgrün
1878	von Bayer	1. Synthese von Indigo
1885	Böttger	Entdeckung Kongorot
1890	Heumann	1. technische Indigosynthese
1897	BASF	Großtechnische Indigosynthese

Farbstoffe auf Anilin-Basis – eine Auswahl

Die neuen Anilin- oder Teerfarbstoffen wurden in kleineren Firmen hergestellt, die sich sehr rasch zu weltweit agierenden Konzernen entwickelten

Anilin- und Teerfarbenfabrik	Gründungsjahr
Farbwerke Meister, Lucius & Brüning,	
später Farbwerk Hoechst (MLB)	1862
Farbenfabriken vorm. Friedrich Bayer & Co (By)	1863
Kalle & Co. Aktiengesellschaft	1863
Actiengesellschaft für Anilinfabrikation (AGFA)	1873
Badische Anilin- und Sodafabrik	1865
Leopold Cassella & Co.	1870
Chemische Fabrik Griesheim	1856
Carl Jäger GmbH Anilin-Farbenfabrik	
Farbenfabrik Dahl & Co	
Anilinfarben- und Extract-Fabriken	
vorm. Job. Rud. Geigy	1859

Tabelle 3: Teerfarbenfabriken nach 1856 (nicht vollständig)

Die BASF im Jahre 1881

15 Jahre nach der Firmengründung

Herstellung von künstlichen **Teer**-Farbstoffen

Künstliche Herstellung von Naturfarbstoffen: Indigo, Alizarin

Motivation für Entwicklung einer umfangreichen Farbstoffpalette:

1. Qualitätssicherung hinsichtlich

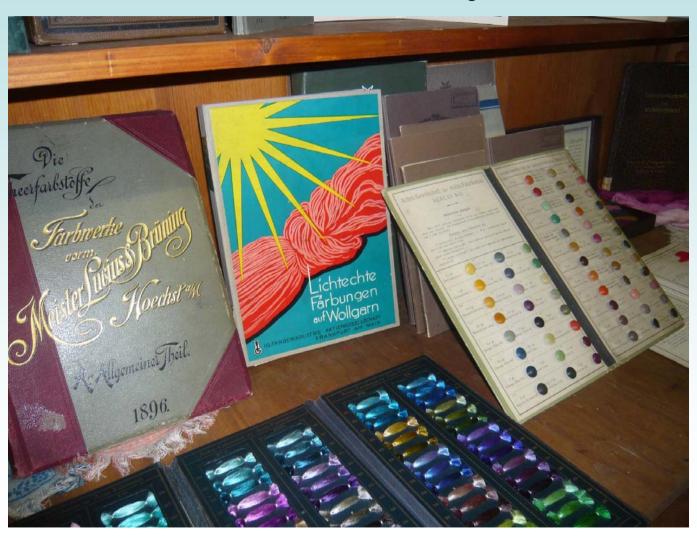
- Farbnuancierung
- Echtheitseigenschaften
- Kostenminimierung

2 umfangreiche und billige Verfügbarkeit wertvoller Rohstoffe

- Aromatische Kohlenwasserstoffe
- Phenole
- Amine

3. einfach durchführbare Umsetzungen

- Nitrierung
- Sulfonierung
- Alkylierung
- Acylierung
- Diazotierung
- Reduktion


4. Patentabsicherung der einzelnen Erfindungen

Die Echtheitskriterien für Textilfarbstoffe und ihre Prüfung und Zertifizierung

DIN	Bestimmung der
53952	Lichtechtheit von Färbungen, Drucken von Farbstoffen
53953	Wasserechtheit von Färbungen und Drucken
53954	Meerwasserechtheit von Färbungen und Drucken
53955	Wassertropfenechtheit von Färbungen und Drucken
53956	Waschechtheit von Färbungen und Drucken
53957	Schweißechtheit von Färbungen und Drucken
53958	Lösungsmittelechtheit von Färbungen und Drucken
53959	Reibechtheit von Färbungen und Drucken
53960	Bügelechtheit von Färbungen und Drucken
53961	Säureechtheit von Färbungen und Drucken
53962	Avivierechtheit von Färbungen und Drucken
53963	Alkaliechtheit von Färbungen und Drucken
53964	Sodakochechtheit von Färbungen und Drucken
53965	Beuchechtheit von Färbungen und Drucken
53966	Peroxyd-Bleichechtheit von Färbungen und Drucken
53967	Chlorechtheit von Färbungen und Drucken
53968	Mercerisierechtheit von Färbungen und Drucken
53969	alkalischen Walkechtheit von Färbungen und Drucken
53970	sauren Walkechtheit von Färbungen und Drucken
53971	Karbonsierechtheit von Färbungen und Drucken
53972	Schwefelechtheit von Färbungen und Drucken
53973	Pottingechtheit von Färbungen und Drucken
53974	neutralen, sauren und Chrom-Überfärbechtheit von Färbungen und Drucken
53975	Dekaturechtheit von Färbungen und Drucken
20212	Denature Criticit von Farbungen und Drucken

Über die Gebrauchseigenschaften der Textilfarbstoffe informierten Musterkarten

Ein große Sammlung von Musterkarten findet sich in der Historischen Farbstoffsammlung der TU Dresden

Neben der Herstellung einer riesigen Palette völlig neuartiger (künstlicher) Farbstoffe wurde auch die Synthese von Naturfarbstoffen vorangetrieben

1868: Alizarin-Synthese (Gräbe, Liebermann)

1878: Indgo-Synthese (v. Bayer)

Die technische Gewinnung von
Indigo und Alizarin in Deutschland
ruinierte die traditionellen
Anbaugebiete in Südeuropa und
Asien. Die daraus erwachsenden
Schwierigkeiten für die
Kolonialmächte versuchte die
französische Regierung dadurch zu
umgehen, dass sie die Uniformen
ihrer Soldaten mit den nur noch
verlustreich zu handelnden
Naturprodukten färbte.

Wichtige Klassen synthetischer organischer Farbstoffe (nach strukturellen Gesichtspunkten)

- Polyene-Farbstoffe
- Azofarbstoffe
- Donator-Akzeptor-substituierte Aromaten und Heteroaromaten
- Chinoide Farbstoffe
- Indigoide Farbstoffe
- Di- und Triphenylmethan-Farbstoffe
- Polymethinfarbstoffe
- Porphyrine und Phtalocyanine
- Betainische Farbstoffe
- Schwefelfarbstoffe und Anilinschwarz

Herstellungsprinzip für Azofarbstoffe

Beispiele typischer Azofarbstoffe auf Anilin-Basis

vorzugsweise Gelb- und Rottöne

$$H_2N$$
 $N = N$
 $N = N$

Bismarckbraun (Martius 1865)

$$HO_3S$$
 N
 SO_3H
 NH_2

Methylorange

Chrysoidin (Caro 1875)

Buttergelb

Kongorot (Böttiger 1884)

Beipiele von heterocyclischen Azoverbindungen

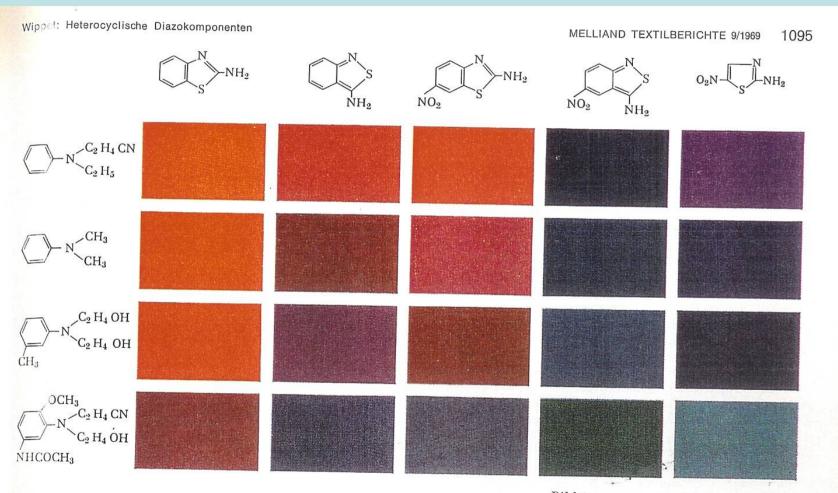


Bild 1

Wichtige Klassen organischer Farbstoffe

(nach färberischen Gesichtspunkten)

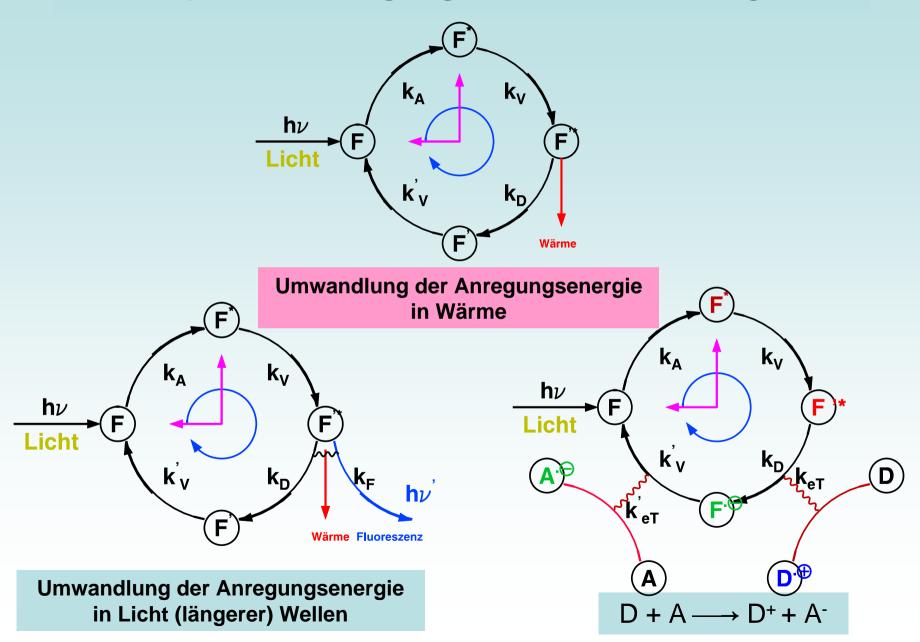
- Direktfarbstoffe
- Dispersionsfarbstoffe
- Säurefarbstoffe
- Basische Farbstoffe
- Beizenfarbstoffe
- Reaktivfarbstoffe
- Küpenfarbstoffe
- Entwicklungsfarbstoffe

Gegenwärtig erfährt die Entwicklung neuer **Textilfarbstoffe** weltweit relativ wenig Beachtung.

Auch die Entwicklung neuer **Farbpigmente**, z.B. für die Druckindustrie, stagniert merklich und wird oft durch Zufallsentdeckungen bestimmt:

Ferrari-Rot

Demgegenüber finden z.B. im kosmetischen Sektor zahlreiche neue Innovationen statt



Optische Anregung und Desaktivierung

- für klassische Bildaufzeichnungsverfahren
- Druckfarben
- Stempelfarben
- Tinten-Farbstoffe
- Toner
- Farbstoffe für Kopiermateralien (Blaupause, farblose Blaupause)
- Thermokopierfarbstoffe
- Bildfarbstoffe für photographische Aufzeichnungsverfahren
- für Indikator- und Sensorzwecke
- Indikatorfarbstoffe, zB. für pH-Titration, Komplexometrie
- Markierungsreagenzien, z.B. für biologische Materialien (DNA)

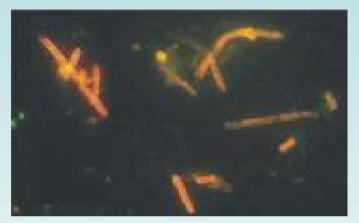
- für elektronische (nichtklass.) Aufzeichnungsverfahren
- für Elektrophotographie
 - Toner
 - Photoleiter
- für Elektrochromie
 - redoxaktive Farbstoffe
- für elektronische Bildanzeige
 - dichroitische (LCD)-Farbstoffe
 - Lumineszenzfarbstoffe

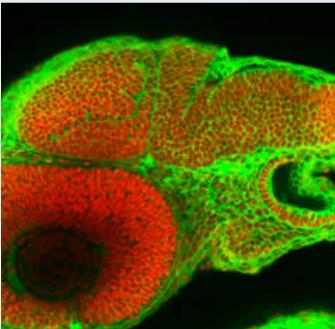
- für optische Sensibilisierung

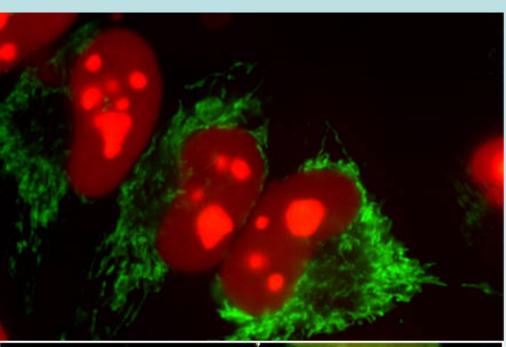
- Sensibilisierungsfarbstoffe für Silberhalogenid-Photographie
- Photokatalysatoren (Photosynthese)
- Singulettsauerstoff-Sensibilisatoren
- Phototherapeutika

- für nichtlineare Optik

- optische Schalter (Mach-Zehnder-Interferometer)
- Frequenzverdoppler

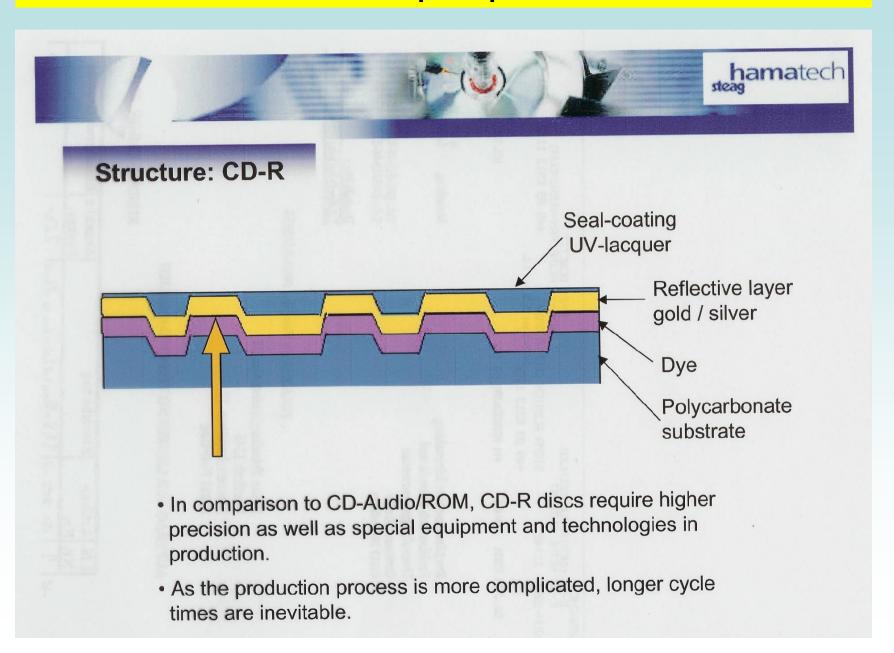

- für Leuchtzwecke

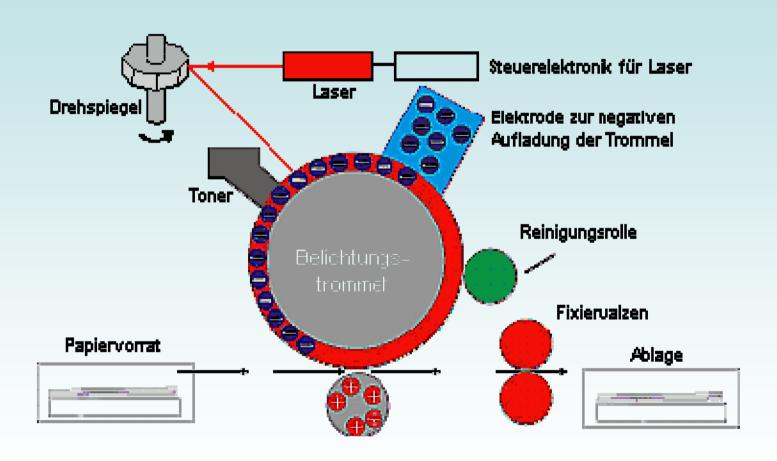

- Optische Aufheller (Blankophor)
- Laserfarbstoffe (Rhodamin)
- elektrolumineszierende Farbstoffe für OLEDs


- für Photovoltaik

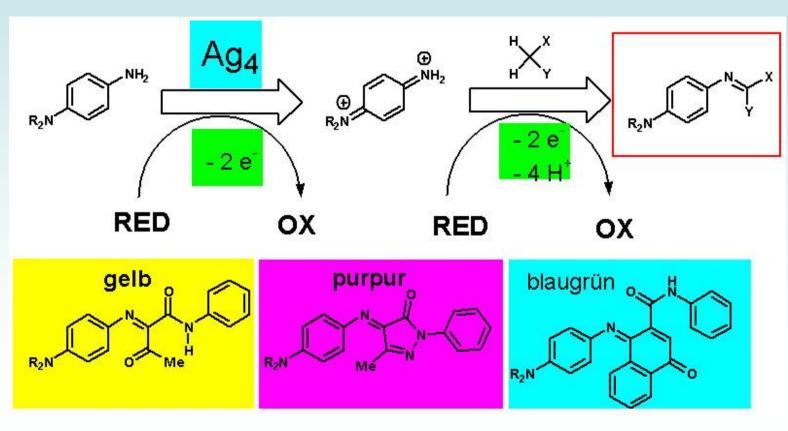
- in Grätzel-Zellen
- in pin-Zellen
- in Tandemzellen

Fluoreszenzmarker in Biologie und Medizin



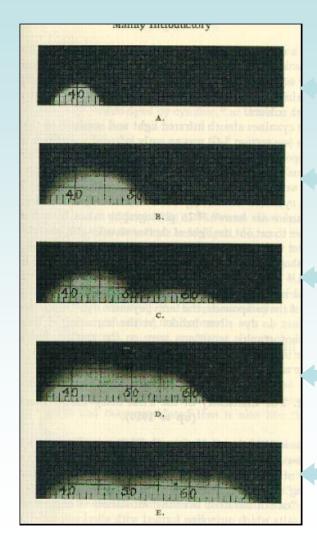


Konstruktionsprinzip einer CD-R



Funktionsprinzip eines Laser-Printers

Farbstoffe im photographischen Prozess


Colour-Prozess:

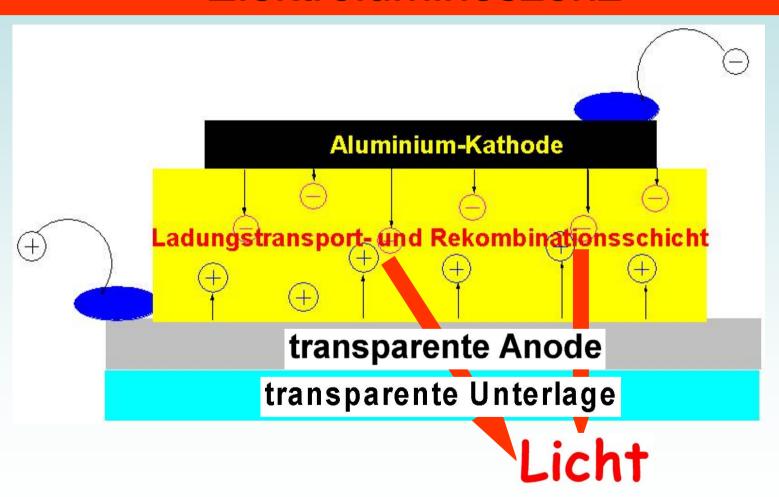
1. Schicht 2. Schicht 3. Schicht

Prinzipien des photographischen Prozesses

Spektrale Sensibilisierung (Vogel 1885)

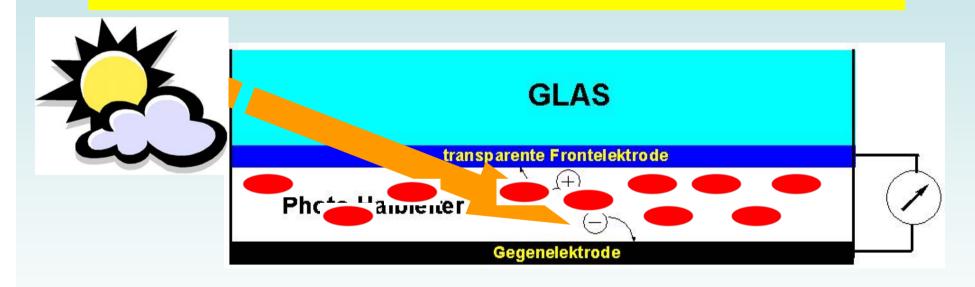
Silberchlorid-Emulsion, unsensibilisiert

Silberbromid-Emulsion, unsensibilisiert


Silberbromid-Emulsion, grün-sensibilisiert

Silberbromid-Emulsion, rot-sensibilisiert

Silberbromid-Emulsion, infrarotsensibilisiert

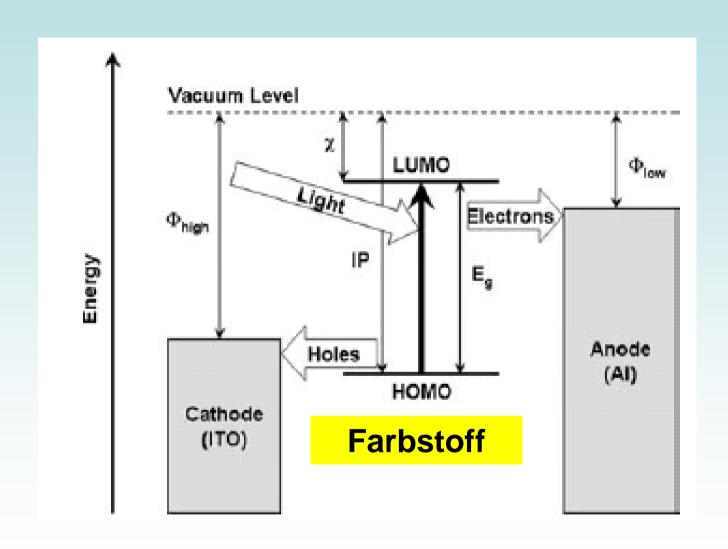

Funktionsweise einer Organischen Leuchtdiode (OLED)

Elektrolumineszenz

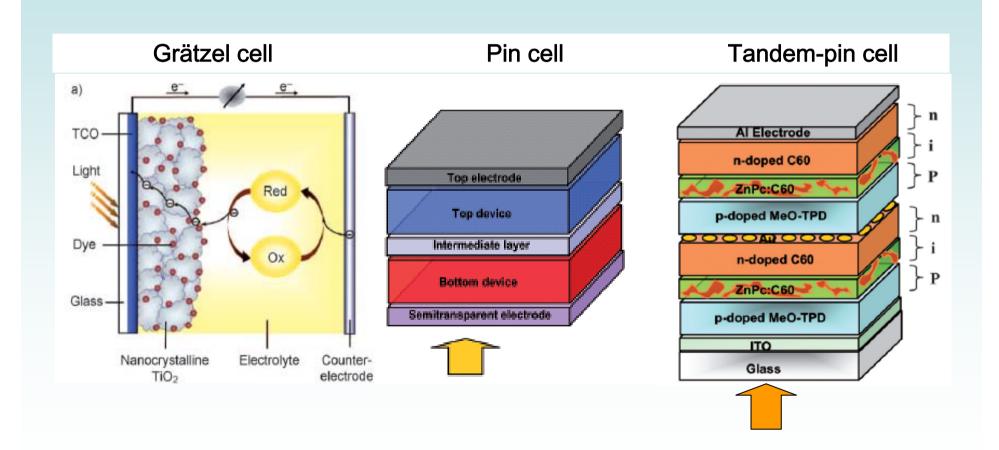
Solarzelle:

direkte Erzeugung von elektrischen Strom aus Sonnenlicht

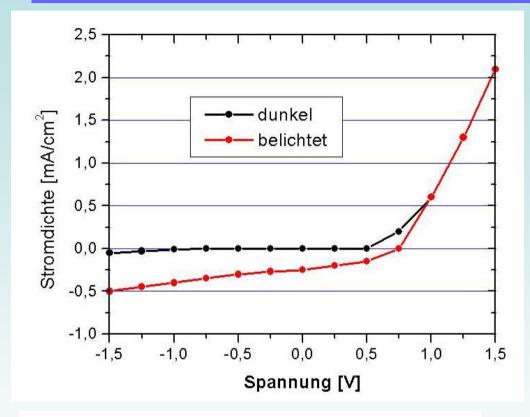
Durch Lichteinstrahlung werden aus einem Farbstoff Ladungsträger freigesetzt, die im umgebenden Halbleiter zu den Elektroden wandern können.


Material- und Bautypen organischer Solarzellen:

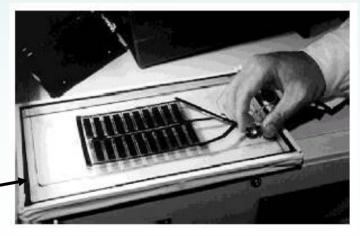
- Silizium, einkristallin
- Silizium, polykristallin
- anorgan./organischer Halbleiter (Grätzelzelle)
- organische Halbleiter
 - molekulare Halbleiter
 - polymere Halbleiter


Funktionstypen organischer Solarzellen:

- Einzelzelle
- Tandemzelle


Funktionsprinzip einer organischen Solarzelle

Verschiedene Typen organischer Solarzellen


Technische Daten von Solarzellen

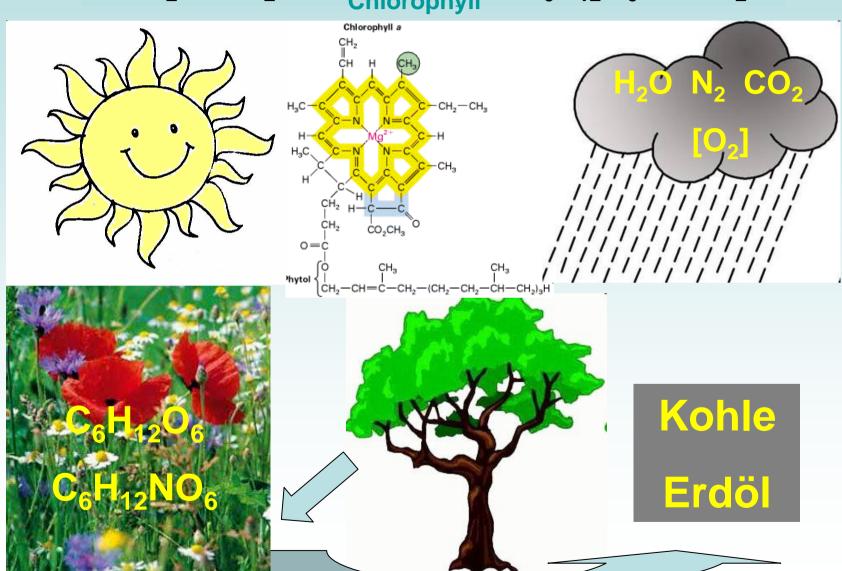
U-I-Kennlinie einer PPV/Fulleren-Solarzelle aktive Fläche 50cm²
Belichtung 6mW/cm² Vollspektrum Fluoreszenzlampe

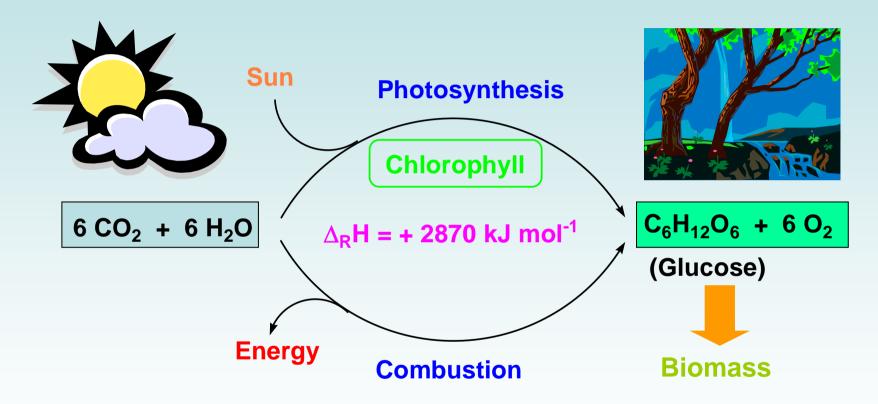
Eine "Plastik"-Solarzelle treibt einen Motor

Wirkungsgrade von Sola	rzellen:
monokrist. SI (anorg.)	28%
amorph. Si (anorg.)	16%
Grätzelzelle (org.)	10%
TiO ₂ /Farbstoff/Jodid	
org. Polymer/C ₆₀	3%

Mit zahlreichern Neuentwicklungen auf dem Gebiet optoelektronischer Systeme wird weltweit eine **nachhaltige Zukunftssicherung** angestrebt.

Organische Farbstoffe und Farbpigmente übernehmen dabei eine entscheidende Schlüsselfunktion


Farbstoffe waren aber auch die grundlegenden Materiailen für das Entstehen des Lebens auf unserem Planeten


Photosynthese – Quelle des Lebens

 $C_6H_{12}O_6 + 6 O_2$

Photosynthetic Efficiency: 4 . 10¹⁸ kJ/a; 0,27 % of the sun light

meine akademischen Lehrer, die mir schon frühzeitig den Weg in die Farbstoffchemie geebnet haben, und all meinen Mitarbeitern, die sich in vielen Jahren mit Engagement und Begeisterung diesem faszinierenden Gebiet gewidmet haben. Danken möchte ich aber auch den vielen Kooperationspartnern aus Industrie und staatlichen Institutionen, die durch ihre finanzielle und materielle Unterstützung unsere Arbeiten meist überhaupt erst möglich gemacht haben.

Indem ich abschließend auch Ihnen, meine Damen und Herren, herzlich für Ihre geschätzte Aufmerksamkeit danke, möchte ich Sie zu einem gelegentlichen Besuch der **Historischen Farbstoffsammlung** der TU Dresden einladen

Kontaktadresse: <farbstoffsammlung@chmie.tu-dresden.de>